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Field work / installations (3-year)
Four fully instrumented meadows:
• 44 piezometers + more by FRCRM 
• 44 tensiometers
• 44 soil moisture 
• 4 continuously recording pressure transducers
• 4 stations for continuously recording soil moisture and soil temp 
• ~30 Hobo logger stream temperature monitoring network
• 3 gauging stations + more by FRCRM
• 1 weather station + more by DWR

Other Work Done:
• Topographic surveys
• Mapping stream width/depth
• Porometry
• Heat flux / evaporation pans
• Vegetation characterization 
• Guelph permeameter
• Characteristic curve experiment
• Soil sample collection
• Slug testing
• Stream gauging / rating curve development
• Groundwater temperature profiling

• Helicopter-based thermography

Part II: Thermal remote sensing of 
stream-aquifer interactions

Introduction Stream-Aquifer ET Implications (Torgersen, 2001)
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Modeled pattern of groundwater 
and hyporheic fluxes
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Conclusions: Stream-aquifer interactions

• Thermography and insitu data provide a detailed 
description of the spatial and temporal variations in 
stream temperature

• Groundwater inflow and hyporheic exchange can 
be understood and quantified in a spatially-be understood and quantified in a spatially
distributed manner using stream temperature 
modeling

• Increased groundwater inflow and hyporheic 
exchange result in decreased stream 
temperatures in the restored subreach at Big Flat 
(improved aquatic habitat)
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Part III: Thermal remote sensing of 
evapotranspiration (ET)

Introduction Stream-Aquifer ET Implications
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ET Mapping Algorithm (ETMA)
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Other comparisons

•Pan ET = 7.0 mm/day

•Potential ET = 5-6 mm/day

•Watertable fluctuations 
ETG= 6.8 mm/day

Conclusions: ET mapping

 ETMA is a valuable tool for 
monitoring the effects on ET of 
river restoration

 Provides 1 m resolution 

 Requires:

• Weather station data 
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Introduction Stream-Aquifer ET Implications

Implications: Societal

• Water resources – quantity, quality, timing

• Legal – stakeholder disputes 

• Public policy – logging, grazing, and 
restoration

• Economic consequences – identify winners 
and losers (e.g., cost-benefit analysis)

• Environmental – terrestrial and aquatic 
ecosystems, ecosystem service

Implications: Scientific

• The example here relates to hydroecology and riparian 
restoration, but high-resolution thermal remote sensing 
shows promise as a general tool for watershed analysis 
and long-term monitoring

• A combined methodology to quantify the two natural, 
spatially-variable, discharge processes

– Groundwater discharge to streams 

– Actual evapotranspiration
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Can thermal imagery be used for watershed 
analysis and quantification of hydrologic fluxes?

Hydroecology of meadow restoration

Transferable methodology:
Riparian restorationRiparian restoration
Land-use change
Climate change

Baseflow assessment
Vegetation mapping
Habitat evaluation
River ecology (fish)
Estuarine dynamics
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