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The 2012–2015 drought has left California with severely reduced
snowpack, soil moisture, ground water, and reservoir stocks, but
the impact of this estimated millennial-scale event on forest health
is unknown. We used airborne laser-guided spectroscopy and satel-
lite-based models to assess losses in canopy water content of Califor-
nia’s forests between 2011 and 2015. Approximately 10.6 million ha
of forest containing up to 888 million large trees experienced measur-
able loss in canopy water content during this drought period. Severe
canopy water losses of greater than 30% occurred over 1 million ha,
affecting up to 58 million large trees. Our measurements exclude
forests affected by fire between 2011 and 2015. If drought conditions
continue or reoccur, even with temporary reprieves such as El Niño,
we predict substantial future forest change.

canopy water | climate change | drought | forest health |
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California has undergone progressive drought since 2012, with
the cumulative rainfall deficit in 2015 described as a one in a

1,000-y event (1). As a result, concern has grown over the eco-
logical and societal effects of the drought throughout the envi-
ronmental conservation, management, and resource policy
communities (2). Such concerns are likely to increase as rising
temperatures interact with droughts in California and around the
world (3–5).
Forests of California are of particular interest because they

include the tallest, most massive, and oldest trees on Earth, as
well as provide a wide variety of goods and services to the state of
California and the world. These services include habitat for nu-
merous plant and animal species, carbon storage for climate
change mitigation, water provisioning for a myriad of industries
and communities, timber for wood products, and ecotourism (6).
Combined with high air temperatures and insect infestations, the
2012–2015 drought has generated a large pulse of tree mortality
in California (7). This event may have cascading effects on forest
fire susceptibility and severity, animal habitat and biological di-
versity, water resources, and carbon sequestration. However, tree
mortality mapping provides a limited understanding of forest
vulnerability and adaptation, because the observations do not di-
rectly resolve forest physiological responses to ongoing changes in
climate. To improve predictions of how forests will change in the
future, spatially and temporally continuous measurements of can-
opy functional responses to climate change are needed.
Monitoring forest canopy physiology in the context of drought

and other climate perturbations has proven challenging, because
the onset and progression of canopy stress is not easily revealed
in traditional satellite observations (8). Newer technologies, such
as high-fidelity imaging spectroscopy (HiFIS), may help to break
this barrier (9, 10). HiFIS measures the spectral radiance reflected
from the land surface in narrow, overlapping, and contiguous
spectral channels (11). After compensation for illumination and
atmospheric effects, HiFIS-measured spectral reflectance yields
quantitative measurements of the mass-concentration of biologically
important molecules and elements (12–15), some of which are di-
agnostic and predictive of vegetation responses to climate change.
One of the most operational HiFIS measurements is canopy

water content (CWC), which is the total amount of liquid water

in the foliage of a canopy. CWC is an indicator of tree physio-
logical status because it underpins important plant functions,
including light interception and growth (16–18). It is broadly
correlated with leaf water potential during times of water stress
(19–21), and thus has served as an indicator of progressive
drought effects on forest canopies (8). CWC is also a useful
predictor for vegetation flammability (22). CWC can be esti-
mated from HiFIS in units of water volume (e.g., liters) in the
canopy on a per area (e.g., square meter) basis, derived from the
depth and shape of 118 spectral absorption features centered at
980 nm and 1,160 nm (23, 24). By combining HiFIS measure-
ments with 3D forest imaging via light detection and ranging
(LiDAR) scanning, it is possible to exclude nonforest canopies,
such as grasses and short shrubs, as well as bare ground, rock
cover, and infrastructure, from the intended measurement
(25). This data-fusion technique, called laser-guided HiFIS,
allows for the measurement and projection of forest CWC in
three dimensions.
HiFIS and LiDAR technologies are not currently available from

satellites. The Carnegie Airborne Observatory (CAO) is one of the
few systems that can make laser-guided HiFIS measurements on an
operational basis (26). Nonetheless, the time needed to cover a
large area, such as the ∼13.4 million ha of forest in California, re-
quires additional techniques that combine aircraft measurements
with an integrated suite of statewide geospatial data (27, 28). We
combined airborne laser-guided HiFIS, multivariate satellite and
environmental data, and geostatistical modeling to develop high-
resolution forest CWCmaps of California (SI Appendix, Figs. S1–S4
and Table S1).
The airborne and satellite measurements were collected in

August 2015, allowing for the derivation of geostatistically robust
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relationships between HiFIS and satellite data using a deep
learning model (SI Appendix). These relationships were used to
scale up the 2015 HiFIS measurements to the entire forested
region of California. In addition, statewide multivariate satellite
data were compiled for 2011, 2013, and 2014, and used to ret-
rospectively estimate forest CWC and change from 2011 to 2015
using our modeling technique. The goal was to quantify CWC
changes over 4 years as a means to understand forest canopy
physiological responses to progressive drought.

Results and Discussion
Forest Canopy Water Content in 2015. Twelve days of flight oper-
ations yielded 1.8 million ha of direct airborne CWC estimates at
2-m spatial resolution. Three example landscapes totaling ∼3,000 ha
are shown in Fig. 1. As depicted in these images, CWC in each
landscape strongly varied based on tree species and condition, local

topography, and other factors. Across California, we observed
enormous CWC variability in the aircraft imagery, with patterns
linked to forest type and geographic location throughout the state.
Some landscapes were comprised of individual trees with CWC
that was greatly suppressed relative to neighboring vegetation.
Other landscapes showed widespread suppression of CWC, with
spatial patterns following the terrain. These results indicated that
the upscaling and modeling of the CWC measurements to state-
wide maps needed to be accomplished at relatively fine spatial
resolution. We selected 30-m × 30-m resolution (0.09 ha) as the
resolution for modeling all forests of California (SI Appendix).
Ten percent of the original aircraft CWC data were left out of

the scaling step to validate the statewide 2015 model. These
validation data were selected randomly from aircraft coverage
acquired throughout the state, and were comprised of 1.2 million
measurements. Regression analyses showed an R2 of 0.82 and
root mean squared error of 0.45 L/m2 of forest canopy (SI
Appendix, Fig. S5). Mean absolute deviation was 0.33 L/m2.
These results indicated that the statewide model captures the
spatial and ecological patterns of CWC measured using airborne
laser-guided HiFIS.
We assessed the importance of environmental factors mediating

the patterns of forest CWC as measured by the aircraft sensors (SI
Appendix). Geographic location and elevation accounted for a large
proportion of the measured variation in CWC (SI Appendix, Fig.
S6). Beyond these factors, a suite of satellite vegetation metrics was
important in modeling forest CWC. These metrics included the
fractional cover of green leaf photosynthetic vegetation, bare
ground exposure, and shortwave-infrared reflectance, the latter
being sensitive to canopy water content (29, 30). This suite of sat-
ellite-based vegetation measurements were critically important for
scaling up the direct CWC observations from airborne laser-guided
HiFIS, and for developing retrospective models of change in CWC.

Fig. 1. Example CAO images of forest 3D canopy water content (CWC)
highlighting landscapes of about 1,000 ha each, with high, medium, and low
CWC. (Inset) Graph shows the frequency distribution of CWC in liters of
water per square meter (L/m2). These landscape examples were taken from
Muir Woods National Monument (high CWC), Sequoia-Kings Canyon Na-
tional Park (medium CWC), and Los Padres National Forest (low CWC). Field
and airborne observations, as well as US Forest Service studies (7), indicate
massive mortality in the low CWC landscape shown.

Fig. 2. Forest canopy water content (CWC) reported in liters per square
meter for the state of California as of August 2015. Black areas indicate fire
extents reported between 2011 and 2015 by the US Forest Service (31).
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The statewide model for August 2015 indicated local- to re-
gional-scale gradients in forest canopy water content (Fig. 2
and SI Appendix, Figs. S7–S9). The lowest modeled CWC values
(<1.0 L/m2) were observed in southern Californian forests as well
as in lower elevation forests encircling the Central Valley. This
included lower elevations of the Sierra Nevada Mountains. Ad-
ditional low-CWC forests were modeled on slopes above forested

drainages and river valleys, as well as in extensive swaths throughout
much of the state’s wildland-urban interface.

Forest Canopy Change 2011–2015. Statewide retrospective analyses
revealed major changes in forest CWC between 2011 and 2015
(Fig. 3). We emphasize the importance of drought in the fol-
lowing results, but note that changes in CWC integrate the effects

Fig. 3. Forest canopy water loss from 2011 to 2013, 2013 to 2014, and 2014 to 2015. Black areas indicate fire extents reported between 2011 and 2015 by the
US Forest Service (31).
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of drought, widespread insect damage, and high temperatures
(3, 31). Our results exclude all reported burned areas mapped
between 2011 and 2015 by the US Forest Service (31), so as not
to conflate CWC loss caused by fire damage. We also generated
a map showing the period in which CWC decreased by at least
5% (Fig. 4 and SI Appendix, Figs. S10–S12). This map reveals
the spatially progressive nature of forest canopy response to
drought through time.
Results indicated that the area of forest negatively impacted in

the 2011–2013, 2013–2014, and 2014–2015 periods was 4.0, 6.1,
and 6.6 million ha, respectively (Figs. 3 and 4 and SI Appendix,
Fig. 5A). From 2011 to 2013, many of the lower-elevation forests
and woodlands encircling California’s Central Valley underwent
CWC losses (Fig. 4, blue). By 2014, additional water loss was
found in lowland and foothill forest settings, such as the Santa
Cruz Mountains (Fig. 4, green). By 2015, much more extensive
drought-related forest canopy water loss was observed at higher
elevation, well above the zones of initial water loss (Fig. 4, red).
To place the CWC results in the context of potentially at-risk

trees, we mapped stem densities provided in 5,565 US Forest
Service Forest Inventory and Analysis (FIA) field plots (32) to
estimate the maximum number of “large” trees (≥12.7 cm di-
ameter at breast height) affected by drought-related factors (SI
Appendix, Figs. S13 and S14). From 2011 to 2013, the forested
area of 4.0 million ha contained up to 283 million large trees that
showed a measurable degree of water loss (Fig. 5B). In the 2013–
2014 interval, 6.1 million ha of forest with up to 507 million large
trees were measurably affected by drought-related factors. In the
2014–2015 interval, 6.6 million ha and up to 565 million large
trees were negatively affected. Although we emphasize that these
statistics do not represent mortality, they do point to rapid in-
creases in the vulnerability of millions of trees that were physi-
cally and physiologically affected by drought and related factors.

We combined the multiyear results from Fig. 3 into a single
map of progressive canopy water stress indicating the cumulative
water loss for forests in California, as the sum of percent water
losses from 2011 to 2015 (Fig. 6 and SI Appendix, Figs. S15–S17).
Based on this map, we estimate that 10.6 million ha and up to
888 million large trees underwent progressive, directional de-
creases in CWC between 2011 and 2015. Of this amount, a total
forest area of 5.4 million ha, comprising up to 412 million large
trees, decreased in canopy water content by at least 10%. Losses
of greater than 30% CWC, a threshold we view as severe based
on aircraft videography and visual observations, covered a cu-
mulative area of 1 million ha comprised of up to 58 million
large trees.
Although it is conceptually straightforward to link canopy

water loss to suppressed growth or carbon uptake in forests (8), it
is more challenging to convert maps of CWC loss to estimates of
tree mortality. For example, the range of potential mortality
responses at 10% CWC loss on a hectare scale is a follows: a
10% decrease in average CWC could represent mortality of up
to 8 trees per hectare at FIA’s median California forest stand
density of 80 large trees per hectare. On the other hand, 10%
CWC loss could be spread among all trees in a hectare, thereby
representing a measurable, but likely nonlethal, amount of water
loss or leaf area reduction among all trees. However, very few
regions selected for airborne CWC mapping showed such
evenness in canopy water content by 2015 (Fig. 1). Moreover,
analysis of aircraft-based CWC in 2015 against the retrospective,
progressive water stress map (Fig. 6) indicated that water losses
were strongly associated with tree-scale changes in water content
(SI Appendix, Table S3). Based on these observations and anal-
yses, we believe that CWC decreases of more than 10% on a
hectare basis represent, at a minimum, a major suppression of
productivity and reductions in canopy leaf area, and more likely
indicate a loss of multiple trees per hectare.
We further interpreted the progressive water loss results based

on the US Geological Survey LANDFIRE land-cover classifi-
cation (SI Appendix). From 2011 to 2015, vegetation types
showing large declines in CWC (>15%) included lowland mixed
conifer-oak, particularly pine-dominated areas, chaparral wood-
lands, as well as trees in shrubland ecosystems (SI Appendix, Table
S2). Note again that our minimum canopy height cut-off was 2 m,
including in areas classified as shrubland. Major CWC decreases
were observed in forests comprised of coastal redwoods in the
lowlands, and at higher elevations pinyon-juniper, lodgepole pine,

Fig. 4. The geography of forest canopy water loss from 2011 to 2015,
partitioned spatially by onset period of observation. Only water losses of at
least 5% are displayed. Black areas indicate fire extents reported between
2011 and 2015 by the US Forest Service (31).

Fig. 5. (A) Mapped forest areas of decreases in canopy water content be-
tween 2011–2013, 2013–2014, and 2014–2015. (B) Estimated maximum
number of trees (≥12.7 cm or 5 inches diameter at breast height) affected for
each observation interval.
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Fig. 6. Progressive forest canopy water stress for the years 2011–2015, computed as the total percentage CWC loss for the study period. Inset graph indicates
the mapped forest area and estimated maximum number of trees (≥12.7 cm or 5 inches diameter at breast height) affected in differing CWC loss classes. Black
areas indicate fire extents reported between 2011 and 2015 by the US Forest Service (31).
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red fir, and black oak forests underwent widespread water losses.
Only the highest-elevation forests and patches of lower-elevation
forests and woodland types showed less (but still measurable)
losses in CWC.

Forest Monitoring in a Changing Climate. To our knowledge, our
results are the first to reveal progressive forest canopy water loss
resulting in highly suppressed canopy water content in many
regions of California. By August 2015, much of the state had
undergone a measurable decrease in forest CWC since 2011.
Over approximately the same time period, low-altitude visual
mapping studies conducted by the US Forest Service estimated
that roughly 27 million trees died in California forests (7, 33, 34).
Major differences in mapping approach preclude a direct com-
parison of our method to aerial tree counts: Aerial surveys of
brown and leafless trees suggest increasing mortality rates over
time, whereas our modeled changes in canopy water content serve
more of a prognostic role in terms of potential mortality. None-
theless, map-to-map comparisons indicate a similar overall geo-
graphic pattern of canopy water loss (Fig. 6) and mortality (7, 33).
Importantly, our measurements reveal far higher levels of

drought-affected forest than can be assessed using visual map-
ping approaches. We found massive areas of progressive canopy
water stress that are geographically aligned with a growing
population of observed dead trees. Moreover, if drought con-
tinues or reoccurs, there exists a pool of trees spread over mil-
lions of hectares of forest that may undergo sufficient CWC loss
to result in death. Based on rates of CWC change observed
during the drought (Fig. 5), this pool could increase into the
hundreds of millions of trees.
Given the wide variety of forest and woodland environments

found throughout California, and their variable CWC losses
during the 2012–2015 drought, repeated airborne and satellite
surveys will be needed to assess longer-term impacts. By com-
bining CWC monitoring with field inventory, it should be pos-
sible to develop a capability to predict mortality. Until then, our
approach uniquely identifies trees and landscapes of changing
vulnerability as climate conditions evolve over time.
CWC monitoring yields spatially explicit information to sup-

port innovations in forest conservation, management and re-
source policy development at multiple scales. The options vary
depending upon the scale-dependent technological steps de-
veloped and presented here. High-resolution, aircraft-based
CWC measurements provide new data on millions of hectares of
forest and generate detail on a tree-by-tree basis (Fig. 1). Potential
applications of HiFIS data include implementation of prescribed

fire, firebreaks, and other fire-management approaches, hazardous
tree removal, ecological corridor and habitat management, and
watershed management. At the broad state level, the 30-m reso-
lution models reveal the full extent and depth of impact of drought
on California’s entire forest canopy. The findings strongly suggest
that if drought continues, even with a potential temporary reprieve
via a 2015–2016 El Niño (35), we can expect continuing forest
change at the regional scale. Long-term resource policy and de-
cision-making efforts may consider such impacts on forest re-
sources, such as by assessing geographically explicit increases in
carbon emissions where tree mortality occurs, versus increases in
carbon sequestration following tree species migration (e.g., higher
elevations). Planning for corridors of species migration in Cal-
ifornia, such as by expanding protected areas and limiting infra-
structural development, is one example strategic use of the new
information derived from imaging spectroscopy.
In the context of forest management and resource decision-

making, current mainstream satellite technologies provide in-
formation only on forest cover, deforestation, and other physical
disturbances to forest canopies (36). We currently lack a mission to
place a high-fidelity imaging spectrometer into Earth orbit. Such a
device will deliver continuous measurements of vegetation canopy
water content, along with several other Earth surface chemicals
(22, 37). The NASA HyspIRI imaging spectrometer remains in a
premission phase of study (11), yet it lacks a clear plan or schedule
for deployment. Such a mission could greatly enhance our ability to
measure, monitor, and map changes in biospheric composition and
function in the face of climate change.

Methods
To assess the effect of progressive drought on California forests, HiFIS and
LiDAR data were collected using the Carnegie Airborne Observatory (26). The
CAO sensor package includes a dual-laser waveform LiDAR system and a
HiFIS that measures in the 380- to 2,510-nm wavelength range (SI Appendix).
The CAO is able to collect up to 6 ha/s of data during flight. Even at this rapid
rate it is unrealistic to provide wall-to-wall coverage of California’s ∼13.4
million ha of forest. Moreover, even complete coverage would provide only
an instantaneous view in time of CWC. Instead, our approach builds upon
established methods for using noncontinuous airborne data to train a
portfolio of geographically contiguous data to generate statewide geo-
graphic models of forest CWC (SI Appendix).

ACKNOWLEDGMENTS. This study was supported by the David and Lucile
Packard Foundation. The Carnegie Airborne Observatory is currently supported
by the Avatar Alliance Foundation, John D. and Catherine T. MacArthur
Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R.
Hearst III.

1. Robeson SM (2015) Revisiting the recent California drought as an extreme value.
Geophys Res Lett 42(16):6771–6779.

2. Brown EG (2015) State of California Proclamation of a State of Emergency (Executive
Department, State of California, Sacramento, CA).

3. Williams AP, et al. (2015) Contribution of anthropogenic warming to California
drought during 2012-2014. Geophys Res Lett, 42(16):6819–6828.

4. Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased
drought risk in California. Proc Natl Acad Sci USA 112(13):3931–3936.

5. Allen CD, et al. (2010) A global overview of drought and heat-induced tree mortality
reveals emerging climate change risks for forests. For Ecol Manage 259(4):660–684.

6. Chornesky EA, et al. (2015) Adapting California’s ecosystems to a changing climate.
Bioscience 65(3):247–262.

7. USFS (2015) 2015 Forest Health Protection Arial Detection Survey. Available at www.
fs.usda.gov/detail/r5/forest-grasslandhealth/. Accessed November 1, 2015.

8. Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in
an Amazon forest measured with spaceborne imaging spectroscopy. Proc Natl Acad
Sci USA 101(16):6039–6044.

9. Shugart HH, et al. (2015) Computer and remote-sensing infrastructure to enhance
large-scale testing of individual-based forest models. Front Ecol Environ 13(9):
503–511.

10. Schimel DS, Asner GP, Moorcroft PR (2013) Observing changing ecological diversity in
the Anthropocene. Front Ecol Environ 11(3):129–137.

11. Lee CM, et al. (2015) An introduction to the NASA Hyperspectral InfraRed Imager
(HyspIRI) mission and preparatory activities. Remote Sens Environ 167:6–19.

12. Curran PJ (1989) Remote sensing of foliar chemistry. Remote Sens Environ 30:271–278.

13. Asner GP, Martin RE, Anderson CB, Knapp DE (2015) Quantifying forest canopy traits:
Imaging spectroscopy versus field survey. Remote Sens Environ 158(0):15–27.

14. Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA (2014) Spectroscopic de-
termination of leaf morphological and biochemical traits for northern temperate and
boreal tree species. Ecol Appl 24(7):1651–1669.

15. Clark RN, et al. (2003) Imaging spectroscopy: Earth and planetary remote sensing with
the USGS Tetracorder and expert systems. J Geophys Res Planets 108(5131):1–44.

16. Chaves MM, et al. (2002) How plants cope with water stress in the field. Photosyn-
thesis and growth. Ann Bot (Lond) 89(Spec No):907–916.

17. Metcalfe DB, et al. (2008) The effects of water availability on root growth and
morphology in an Amazon rainforest. Plant Soil 311(1-2):189–199.

18. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress:
Effects, mechanisms and management. Sustainable Agriculture, eds Lichtfouse E,
Navarrete M, Debaeke P, Souchere V, Alberola C (Springer, The Netherlands), pp
153–188.

19. Meir P, et al. (2009) The effects of drought on Amazonian rain forests. Amazonia and
Global Change, Geophysical Monograph Series, eds Keller M, Bustamante M, Gash J,
Silva Dias P (American Geophysical Union, Washington, DC), Vol 186, pp 429–449.

20. Nepstad DC, et al. (2002) The effects of partial throughfall exclusion on canopy
processes, aboveground production, and biogeochemistry of an Amazon forest.
J Geophys Res 107(D20):1–18.

21. Vourlitis GL, et al. (2008) Energy balance and canopy conductance of a tropical semi-
deciduous forest of the southern Amazon Basin. Water Resour Res 44(3):W03412.

22. Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using imaging spec-
troscopy to study ecosystem processes and properties. Bioscience 54(6):523–534.

6 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.1523397113 Asner et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523397113/-/DCSupplemental/pnas.1523397113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523397113/-/DCSupplemental/pnas.1523397113.sapp.pdf
http://www.fs.usda.gov/detail/r5/forest-grasslandhealth/
http://www.fs.usda.gov/detail/r5/forest-grasslandhealth/
www.pnas.org/cgi/doi/10.1073/pnas.1523397113


23. Gao B-C, Goetz AFH (1990) Column atmospheric water vapor and vegetation liquid
water retrievals from airborne imaging spectrometer data. J Geophys Res 95(D4):
3549–3564.

24. Green RO, Painter TH, Roberts DA, Dozier J (2006) Measuring the expressed abun-
dance of the three phases of water with an imaging spectrometer over melting snow.
Water Resour Res 42(10):W10402.

25. Asner GP, et al. (2007) Carnegie Airborne Observatory: In-flight fusion of hyper-
spectral imaging and waveform light detection and ranging for three-dimensional
studies of ecosystems. J Appl Remote Sens 1:013536.

26. Asner GP, et al. (2012) Carnegie Airborne Observatory-2: Increasing science data di-
mensionality via high-fidelity multi-sensor fusion. Remote Sens Environ 124(0):
454–465.

27. Mascaro J, et al. (2014) A tale of two “forests”: Random forest machine learning AIDS
tropical forest carbon mapping. PLoS One 9(1):e85993.

28. Asner GP (2009) Tropical forest carbon assessment: Integrating satellite and airborne
mapping approaches. Environ Res Lett 4(3):034009.

29. Ustin S, et al. (1996) Estimating canopy water content of chaparral shrubs using op-
tical methods. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop,
ed Green RO (NASA Jet Propulsion Laboratory, Pasadena, CA), pp 235–238.

30. Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire JM (2001) Detecting vege-
tation leaf water content using reflectance in the optical domain. Remote Sens
Environ 77(1):22–33.

31. USDA (2015) US Forest Service Fire Detection Maps. Available at activefiremaps.fs.fed.
us/. Accessed November 1, 2015.

32. USDA (2008) Forest Inventory and Analysis Program. Available at www.fia.fs.fed.us.
Accessed November 1, 2015.

33. USFS (2015) 1014 Aerial Survey Results: California. Available at www.fs.usda.gov/
detail/r5/forest-grasslandhealth. Accessed November 1, 2015.

34. USFS (2013) 2012 Aerial Survey Results: California. Available at www.fs.usda.gov/
detail/r5/forest-grasslandhealth. Accessed November 1, 2015.

35. NOAA (2015) El Niño/Southern Oscillaiton (ENSO) Diagnostic Discussion (National
Weather Service, College Park, MD).

36. GOFC-GOLD (2008) Reducing Greenhouse Gas Emissions from Deforestation and
Degradation in Developing Countries: A Sourcebook of Methods and Procedures for
Monitoring, Measuring and Reporting (Office of GOFC-GOLD Program, Alberta, Canada).

37. Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA (2009) Characterizing
canopy biochemistry from imaging spectroscopy and its application to ecosystem
studies. Remote Sens Environ 113(0):S78–S91.

Asner et al. PNAS Early Edition | 7 of 7

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

PN
A
S
PL

U
S

http://activefiremaps.fs.fed.us/
http://activefiremaps.fs.fed.us/
http://www.fia.fs.fed.us/
http://www.fs.usda.gov/detail/r5/forest-grasslandhealth
http://www.fs.usda.gov/detail/r5/forest-grasslandhealth
http://www.fs.usda.gov/detail/r5/forest-grasslandhealth
http://www.fs.usda.gov/detail/r5/forest-grasslandhealth

