

Water relations and water yield in aspen and conifer forests

Ron Ryel, Eric LaMalfa, Josh Leffler

Dept. Wildland Resources and Ecology Center

Utah State University

State of Utah Department of Natural Resources

Question: Can vegetation manipulation affect water yield?

• Assessed this for aspen and conifer stands in context of conifer encroachment.

- Overview of talk:
 - Some perspectives and background
 - Our study
 - Conclusions and some final synthesis

Some Perspectives

- Plant modify the environment
 Modifications differ by species
- Quaking aspen occurs in both stable and seral stands
 - Stable are largely aspen monocultures
 - Persistent, relatively stable age structure
 - Exhibit gap dynamics
 - Seral stands are mixed aspen-conifer stands
 - Successional
 - Rely on periodic disturbance (usually fire)
 - I am focusing on this type

Decline in Western Aspen

- In the Intermountain West, there is strong evidence for reduced aspen forest coverage in many areas.
 - In Utah, estimates range from 50-60% reduction in aspen forest since European colonization. (Kay 1997; Bartos 2001)
 - Similar or greater reductions in several other western states. (Lachowski et al. 1996; Wirth et al. 1996; Brown 1995)
 - Colorado, however, appears to have had an increase in the coverage of aspen forests. (Manier and Laven 2002, 2001)
- In areas of decline, encroachment and replacement by various conifer species is prevalent. (Shepperd et al. 2006; Bartos 2001; Bartos and Campbell 1998)

Water Input -> Water Output

Water Yield and Aspen

- <u>Goal of Research</u>: to assess effects of conifer encroachment into aspen on watershed water yield.
- **Objective:** Identify mechanisms causing differences in water relations between aspen and conifer stands that could result in differences in watershed water yield.
- <u>Central Hypothesis:</u> Aspen dominated watersheds yield more water than those dominated by conifer stands.

Approach:

- Use "end-point" mature stands of aspen and conifer to assess differences in water relations.
- Stands are adjacent pairs on similar soils, slope, aspect, and elevation

Hypothesized Mechanisms causing Differences in Water Yield between Aspen and Conifer Stands

- H1: Different water accumulation in snow pack
- H2: Different sublimation/evaporation patterns
- H3: Different melting rates and patterns
- H4: Different precipitation related soil recharge
- H5: Different water use by tree species
 - Different transpiration rates
 - Different timing of water use
 - Difference sources of water

Bear and Frost Canyons Deseret Land and Livestock

Methods

Elk protection...

Results

H1: Different water accumulation in snow pack

H2: Different sublimation / evaporation patterns

Daily [24 hr] atmosphere - snowpack exchange for five days in open, aspen, and conifer communities 2006

Result: similar sublimation /evaporation rates, small in quantity.

H3: Different melting rates and patterns

Result: similar melt period despite differences in total snow water.

H4: Different precipitation-related soil recharge

Result: aspen recharged soil moisture earlier, and had higher total soil moisture. Same moisture at start of WY.

H5: Different water use by tree species

Transpiration rates:

Aspen = 3.5 mm d^{-1}

Conifer = 3.0 mm d^{-1}

Result: transpiration in conifer longer, but at very low rates (< 1 mm d⁻¹).

Summary of Results

- Primary differences appear to be:
 - Snow water accumulation
 - Soil moisture accumulation dynamics

• Aspen higher on both counts

• Does this result in greater runoff potential?

Potential for Runoff, Groundwater Recharge

Conclusion – Higher water yield with aspen ?

- Yes, but water can go to surface water, groundwater or move downslope in soils.
 - Accessibility to user depends on fate

Fate of snow melt

Surface runoff

Lateral flow

Groundwater recharge

Conclusion – Higher water yield with aspen ?

- Yes, but water can go to surface water, groundwater or move downslope in soils.
 - Accessibility to user depends on fate
- Where does snow go in conifers?
 - Sublimation of intercepted snow, enhanced by "black body" of dark conifer trees.
 - Wind transports snow intercepted by branches to other areas.
 - Evidence exists for both mechanisms.

• Two mechanisms for increased water yield with vegetation manipulation.

1.Interception of precipitation (often snow)2.Lateral flow of soil water

- 1. Dense woody vegetation intercepts snow
 - Result is less snow reaching ground
 - Conifers yields less than aspen or meadow
 - Thinned conifer systems yield more than dense stands (20% or more cover removed) (Stednick 1996)
 - Other types less successful: sagebrush, juniper. Excess water only recharges soil
 - Requires full soil recharge each year

2. Laterally moving water is intercepted

Surface recharge vs. Lateral flow

2. Laterally moving water is intercepted

- Deep water comes from off site
 - Shallow water comes from rain/snow on site
 - Deeper water comes from lateral flow
- Typical of riparian systems (cottonwoods, willows, saltcedar)
- Can occur with juniper (perhaps more important than interception)

Concluding remarks

- Vegetation types will affect watershed water yield
- Mechanisms relate to precipitation interception and lateral flow of water in soil
- An ecohydrological assessment is needed to assess if vegetation manipulation will affect watershed water yield, and where such gains may occur (surface, groundwater)

Acknowledgements

http://www.western-aspen-alliance.org/

//h _`
RMRS 🔨

United States Department of Agriculture – Forest Service Rocky Mountain Research Station

ARCS Natural Resources Conservation Service

State of Utah Department of Agriculture and Food

State of Utah Department of Natural Resources

Fee Busby Cary Peterson Shane Greene **Rick Danvier Dale Bartos** Mike Amacher Cecelia Melder Nat Frazier Chris Luecke Steve Flint Leanna Ballard **Brooke Shakespeare** Ron Dagle

Benjamin Blumenthal